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The effect of stiffness in wormlike micelles
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Abstract. The effect of stiffness in a 2D living polymer system is investigated by Monte-Carlo simulation
in a canonical ensemble. As the flexibility decreases, the mean chain contour length 〈L〉 decreases and goes
through a local maximum. The mean end to end square distance shows a non-monotonic behaviour due to
the coil-to-rod transition and the decrease in chain contour length. Near the maximum of chain ordering
in the bulk, the chain length distribution adapts itself to increase the configurational entropy. With the
parameters used in this simulation, it seems that the effect of the stiffness for high stiffness is to decrease
〈L〉 as in the isotropic case, since the ordering decreases again.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 05.50.+q Lattice theory
and statistics; Ising problems – 64.60.Cn Order–disorder transformations; statistical mechanics of model
systems

Wormlike micelles can be seen as a system of linear
aggregates in equilibrium that are able to break and re-
combine. The isotropic-nematic transition of cylindrical
micelles has been studied analytically, numerically and ex-
perimentally [1–5].

The effect of the chain flexibility on the general prop-
erties of living polymers has not been studied numerically
as the single varying parameter so far, although it influ-
ences greatly the behaviour of living polymers in, e.g.,
a constrained geometry [6,7]. In all the cases found in
the literature [4,8–10], the simulation is conducted in a
grand canonical ensemble and the various interactions es-
sentially varied through a change in temperature, so that
the relative affinity of the monomers for each other and
their density are not kept constant. The density plays a
major role in living polymers systems [11,12], not only
by changing the mean end to end square distance as in
dead polymers systems of fixed contour length, but also
by changing directly the contour length distribution.

Moreover, in most of the simulations carried out, non-
binding attractive interactions between monomers are
fixed [1,4] in order to take into account the role of in-
terfacial tension. Hence, a phase separation into a dense
and dilute phase may occur, increasing the complexity of
the system.

That a grand-canonical simulation cannot give without
ambiguity the physical origin of an order-disorder transi-
tion has been underlined in reference [4]. Typically, the
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disorientation of the chains because of increased flexibil-
ity is not alone responsible for the observed phase transi-
tion. One indeed observes a sharp drop in the mean chain
length at the phase transition whatever the flexibility. As
a conclusion, Milchev [4] suggested that the phase transi-
tion in a grand-canonical system is more closely connected
to the creation of holes and the rapid change in polymer
weight than to disorientation of long semi-flexible polymer
chains. Hence, it is expected that a canonical simulation
will show only the effect of chain stiffness, since both the
binding energy and the monomer concentration are kept
constant. This work could also lead to some reflections
about other problems found in wormlike micelles or living
polymers. The effect of charges in wormlike micelles has
been studied theoretically taking into account only modi-
fication of the chain end energy [11], neglecting the effect
on the persistence length. Also, certain natural system,
like actin or tubulin, which under given conditions can
also be modeled by living polymers, are rather stiff and
are known to form more-or-less ordered systems [12].

This present study is limited to the two-dimensional
case for the following reasons. First, the results should
be compared with existing grand canonical simulations,
mostly carried out on a square lattice. Secondly, an ad-
ditional isotropic interaction between parallel monomers
is necessary to stabilize an ordered phase [13] in three di-
mensions. The introduction of such an interaction would
strongly increase the complexity of the system.
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The chosen order parameter is in general ψ =∣∣∣∣Nx −NyN

∣∣∣∣ [1–4] where Nx and Ny are the fraction of

bonds in the x and y direction and N = Nx + Ny. Thus
the order parameter ψ is a measure of the ordering in the
whole system. This quantity is subject to finite size effects
which can be used to obtain critical exponent [9]. Another
order parameter is the mean stiffness ζ of the chains, de-

fined as ζ =
1

m

∑
m

max(nx, ny)

n
, where nx and ny are the

number of bonds in the x and y directions, respectively,
of a chain of n = nx+ny monomers. ζ is an average value
taken over all m chains present in the system and, con-
trary to ψ, feels the effect of the finite size of the lattice
only if the longest chains in the simulation span a distance
of the order or greater than the linear system size. This is
of course never the case in the present simulation. Both ψ
and ζ are needed to describe precisely the system at the
level of the chain (ζ) and at the level of the whole systems
(ψ). Although tidely bound to each other, they do not al-
ways vary in the same way. For example, for a system of
rods, ζ = 1, but ψ = 1 if the rods are ordered and ψ = 0
if the system consists of an isotropically oriented solution
of rods.

Although ψ is the most natural choice for the order pa-
rameter, and was used in all of the preceding simulations
to describe the ordering in the system of living polymers,
it might be that a short-range ordering parameter would
be more realistic [14,15]. The question remains to what
extent the lattice influences the results. It seems that this
question has never been discussed in previous simulational
works, where the effect of stiffness was always studied on
lattices [15,16]. On a two dimensional lattice, the order-
disorder transition is clearly second order [9,17].

However, a two dimensional off-lattice simulation [18]
on dead polymers suggests, not without ambiguities on
the model used however, that the transition could be of
the Kosterlitz-Thouless type.

Simulation procedure

The simulation procedure has been extensively described
in reference [19]. The principal details are just recalled
there for sake of clarity.

Only one monomer at a time may be present on
a lattice site (excluded volume interaction between
monomers). Those sites of the lattice which are not occu-
pied by monomers are considered empty (vacancies) and
contribute to the free volume of the system.

An energy −V (V > 0) is set for the creation of a bond
between monomers.

In the present study the ends of a given polymer chain
are not allowed to bind together. This last condition avoids
the formation of rings [10,17] which gives a different length
distribution for even and odd chain length (in monomer
units) with temperature.

This is not really a constraint if we consider micellar
systems in which rings are not likely to occur [20].

A MCS (Monte-Carlo Step) is organised as follows:

(i) The chains are allowed to perform a reptation move.
The slithering snake algorithm is very efficient in dense
systems and allows fast relaxation, both of the chain
conformation and system configuration.

(ii) A monomer is chosen at random. If the monomer hap-
pens to be at the end of a chain, an attempt is made
to create a bond with another monomer which might
be present on any one of the four neighbouring sites
also chosen at random. If the end of another polymer is
present on the chosen neighbouring site, the Metropo-
lis algorithm [21] is applied, that is, a new bond is
created if the value of a random number between 0

and 1 is smaller than min(1, exp

(
−V

KBT

)
).

(iii) Finally, a monomer is chosen at random. If a bond on
the right of the current monomer exists, it attempts to
break, also according to the Metropolis rule.

During one MCS one carries out (ii)–(iii) as many
times as there are monomers in the system. The order
in which these sequences are carried out does not play
any role.

A number of structural properties are sampled during
the simulation: mean average values like the mean contour
length 〈L〉 and the mean square end-to-end distance 〈R2

e〉
(an average over all the chains), which can be estimated
experimentally. The mean square end-to-end distance is
the mean value of the square of the end-to-end distance
taking into account the chains only; i.e., a monomer is a
chain without any bond and has a mean square end-to-end
distance of zero. The simulations have been carried out on
a 100× 100 square lattice with periodic boundary condi-
tions. The absence of finite-size effects was checked, and
the breaking of the chain eliminates the non-ergodicity of
the slithering snake algorithm [21,22]. Within the frame-
work of this model, an extra energy cost σ > 0 is added
for the creation of a kink either by binding or moving of
the chain.

Typically, 2× 105 MCS were necessary to achieve full
equilibrium at the concentration φ = 0.5 and parameter
V/KBT = 7.4 used in this simulation. It has been checked
that the main preferential orientation of the chains near
maximum value of ψ changes many times during the sim-
ulation, so that the set of data taken after equilibration
were possibly uncorrelated. An accurate determination of
the maximum of ψ, which would have needed a complete
finite size scaling analysis, is however beyond the scope of
this study.

Result and discussion

At the level of mean-field approximation (20) in the ab-
sence of closed rings, one can write the free energy for a
system of linear chain as:

F

kBT
=
∑
L

c(L, T )

[
ln c(L, T )− (L− 1)

V

kBT

]
(1)
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where c(L, T ) is the molecular weight distribution for
chain length L. Minimization of equation (1) with respect
to c(L, T ), subject to the condition

φ =
∑
l

Lc(L, T ) (2)

with φ the density of the system yields

c(L, T ) = exp

(
−

(
V

kBT
+ 1

))
exp

(
−
L

〈L〉

)
(3)

with

〈L〉 = φ1/2 exp

((
V

kBT
+ 1

)
/2

)
. (4)

In the presence of stiffness, two cases have to be distin-
guished.

In absence of ordering, the distribution is given by [23]

c(L, T ) = µ(2−L)c(1, T )L(µ exp(V/KBT ))L−1

× (1 + (µ− 2) exp(−µ/KBT ))L−2 (5)

where µ is the coordination number of the lattice.
By numerical integration, it is shown that 〈L〉 de-

creases with σ [23].
In the limit σ → 0, a simple argument allows one to

calculate directly the dependence of 〈L〉 on σ. The addi-
tion of a stiffness for the chain through the presence of a
persistence length defined by Lp = σ/KBT leads to a free
energy

F

kBT
=∑

L

c(L, T )

[
ln c(L, T )− (L− 1)

F

kBT
+ (L/Lp− 1)

σ

kBT

]
(6)

where the term L/Lp − 1 is the mean number of kinks
in a chain of length L. Minimization of equation (1) with
respect to c(L, T ), subject to the condition (2) leads to a
similar expression for the mean chain length 〈Lσ〉 as (4):

〈Lσ〉 = φ1/2 exp

((
Vσ

kBT
+ 1

)
/2

)
(7)

with Vσ = V − σ.
Milchev [4] and Jaric and Benneman [13,14] have

calculated that the effect of the stiffness enters the
free energy in a two dimensional lattice as KBT ln[2 +
4 exp(−σ/KBT )]. The insertion of this last expression de-
veloped in the limit σ → 0 in equation (1) leads to the
same result, equation (7).

In case of ordering, a term accounting for the orien-
tational entropy loss of the micelles in the nematic phase
must be added in equation (1). The ordering increases the
contour length and 〈L〉 grows with σ [24]. There is, how-
ever, no simple relation between the parameter σ and the
mean angle between a section of a micelle and the nematic
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Fig. 1. Plot of the mean chain length 〈L〉 versus σ. The dashed
line is a fit according to equation (7).

director, so that the dependence of 〈L〉 on σ can not be
explicitly given.

The dependence of the mean chain length 〈L〉 as a
function of σ are plotted in Figure 1. The energetic cost
of a kink in the chain decreases first the mean chain length
〈L〉 as σ increases [23].

Note that in reference [4], such a behaviour could not
be observed: the influence of σ was reduced by increas-
ing the temperature T (note that the relevant physical
quantity here is σ/KBT ), which at the same time reduce
also the effect of the binding energy so that the apparent
behaviour is always the greater σ/KBT , the greater the
chain. In reference [1], the authors have shown a snapshot
of a two-dimensional system of linear micelles at constant
concentration and at various (but not too) different tem-
peratures, so that they apparently did not notice the vari-
ation in 〈L〉. In Figure 1, the first part of the curve is
well-fitted with an exponential function as a function of σ
with the expected slope of −0.5 (Eq. (7)). The dependence
of 〈L〉 on σ was studied in detail for 2 < σ < 5 (Fig. 2).
The chain length 〈L〉 goes through a local maximum for
σ ∼ 3.5 before decreasing again. This effect will be corre-
lated with the evolution of other parameters later in this
article.

The evolution of 〈Re2〉 depends both on the mean de-
gree of polymerisation 〈L〉 of the chains and on the con-
formation of the chain, i.e., coil or rodlike.

This is exactly what is observed (see Fig. 3): 〈Re2〉 first
decreases slightly with σ due to the decrease in 〈L〉 and
afterward increases strongly due both to the transition
from a coil to a rod and to the increase in 〈L〉. At higher
value of σ however, when the chains are already stiff and
rod-like, the effect of σ is only to reduce 〈L〉, so that 〈Re2〉
decreases again.

The difference in chain contour length is not large and
a scaling law should be checked over at least one order
of magnitude. An exponent νeff is nevertheless defined
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Fig. 2. Plot of the mean chain length 〈L〉 versus σ in presence
of ordering.
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Fig. 3. Plot of the mean chain end-to-end square distance
〈Re2〉 versus σ.

by 〈Re2〉 ∼ 〈L〉2νeff . This enables, for example, the coil-to-
rod transition to be checked by measuring the apparent
exponent using the same data as for Figures 1 and 3. The
dependence of 〈Re2〉 on 〈L〉 is divided in three main re-
gions (Fig. 4).

For σ/KBT ≤ 1, the chains are not rigid and the ef-
fect of σ is essentially to reduce 〈L〉 as discussed for Fig-
ure 1. The apparent exponent is νeff = 0.5±0.05, i.e., the
exponent expected for a melt of segregated chains. This
apparent value is below the value of the exponent in the θ
regime νθ = 4/7 that we would expect as lower boundary
value. In an earlier study [19], we have observed a simi-
lar behaviour when the change of 〈L〉 is made through a
change of concentration. In that case, the growth of the
end-to-end square distance with 〈L〉 was lowered by the ef-
fect of the increasing density which reduce the end to end
square distance. In the present case, the reduction of 〈L〉
through an increased rigidity also has an effect on the end-
to-end square distance. The increased rigidity of the chain
tends to increase the end-to-end square distance, so that
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Fig. 4. Plot of the mean chain end-to-end square distance
〈Re2〉 versus 〈L〉.
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Fig. 5. Plot of the ordering parameter ζ (upper curve) and ψ
(lower curve) as a function of σ.

the end-to-end square distance decreases more slowly with
decreasing 〈L〉, or conversely that the end-to-end square
distance scales with 〈L〉 with an apparently lower expo-
nent. For σ/KBT ≥ 4, the chains are rod-like, and the ap-
parent exponent is νeff = 1±0.05. Here again, the effect of
σ is restricted to a reduction of 〈L〉. The end-to-end square
distance is very sensitive to a change in 〈L〉: 〈Re2〉 ∼ 〈L〉2,
so that a variation of 10% leads to a change of ∼ 20% in
〈Re2〉. The intermediate regime, 1 < σ/KBT < 4, shows
a very high dependence of 〈Re2〉 on 〈L〉, but it is not well
fitted by any simple function. In this regime, the effect of
σ is essentially to induce the coil to rod transition.

The increase in stiffness as a function of σ is also clearly
seen on the curve ζ as a function of σ (Fig. 5). ζ starts from
a value slightly above zero at σ = 0 and reaches asymp-
totically the value of 1 for σ > 5. The nonzero value of
ζ at σ = 0 comes from the presence of chains with con-
tour length smaller than or of the order of the persistence
length lp induced by the excluded volume interaction. In
this 2D lattice model, lp ∼ 4 [19]. The ordering in the bulk
is given by the curve Ψ as a function of σ (Fig. 5). The or-
dering increases first with increasing chain stiffness, goes
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through a maximum for σ ∼ 3.5 and decreases slowly. It is
also for this value of σ that 〈L〉 reaches a local maximum.
The growth of 〈L〉 seems to be correlated with a nematic
ordering, in agreement with analytical predictions [24].

The snapshots of the system at σ = 0, σ = 3.5 and
σ = 7 (Figs. 6a, 6b, 6c) illustrate the behaviour of the
system. At σ = 0, the system is clearly isotrop whereas at
σ = 3.5, large domains of ordered chains are observed, the
chains being rod-like. The further increase of σ does not
change the chain conformation (the chains are already rod-
like) but reduces the mean contour chain length, so that
at σ = 7 an isotropic system of small rods is observed.

The chain contour length distribution at σ = 3.5 and
σ = 7 are plotted in Figure 7. The effect of the stiffness is
to modify the Schultz-Zimm like distribution observed in
living polymers systems [25]. As observed in the absence of
order [24], the number of monomers is below the amount
of dimers and trimers. Only the classical mean-field expo-
nential remains for L > 2, without the appearance of the
typical shoulder in the distribution due to a different be-
haviour for the chain smaller than a blob size [25,26]. The
particularities of the molecular weight distribution in two
dimensions [25] are also found in three dimensions [27], so
that the same modification of the molecular weigth distri-
bution with stiffness are likely to occur in three dimensions
(see also [1] for the use of two-dimensional simulations and
extension of the results to the three dimensional case). It
is worth noting that at the maximum of ordering and local
maximum of 〈L〉 (σ = 3.5) and beyond, the distribution
is still of the form given in absence of ordering.

Knowing the distribution also enables the calculation
of the contribution of the mean-field configurational en-

tropy [4] ∆S/KBT = −
∑
L

C(L) ln(C(L)) that is plotted

as a function of σ in Figure 8. This entropy is not the
total entropy of the system, since the interchain ordering
in the system is not taken into account. It also doesn’t
include the contribution due to the various conformations
a chain of a given length could take. It is defined as the
entropy related to the distribution of the monomers in
clusters (living polymers) of different sizes. The config-
urational entropy decreases first with increasing stiffness
signalling the disappearance of the longer chains and the
repartition of the monomers in smaller chains. The en-
tropy stops its decrease for σ ∼ 2 and increases a bit with
a maximum near σ = 3.5, a value for which the local or-
dering parameter Ψ takes its maximum value. Hence the
loss of entropy due to the ordering of the stiff chains in
the system is, at least partially, counterbalanced by this
increases in configurational entropy.

Another entropic contribution of interest is given by
the mixing of rigid and flexible bonds ∆Sf/KBT =
−(f ln(f) + (1 − f) ln(1 − f)) (Fig. 9), where f is the
total fraction of adjacent flexible bonds (or kinks). This
definition of the flexibility is different than in [4] and is
the one suitable for the calculation of ∆Sf . In [4], where
the IMS model is used, the monomers possess two dan-
gling ends. The overlap of two dangling ends of two dif-
ferent monomers defines a bond between the monomers.
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Fig. 6. Snapshot of the system at (a) σ = 0, (b) σ = 3.5 and
(c) σ = 7.
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Fig. 7. Semi-logarithmic plot of the chain length distribution
for σ = 3.5 (lower curve) and σ = 7 (upper curve).
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The parameter σ acts directly on each monomer by defin-
ing the probability of having parallel or perpendicular
dangling ends. The flexibility is defined per monomer
through the relative position of the dangling ends to each
other, independently of the fact that a bond between
monomers exists or not. In the IMS model, a polymer
of L monomers has L+ 1 bonds taken into account in the
flexibility calculation, each polymer end having a dangling
end whose orientation depend on σ. It means also that f
depends not only on σ but also strongly on 〈L〉 in general
since e.g. chains of length L = 1 without bonds contribute
to f . In the present work, the flexibility is defined strictly
by the relative orientation of adjacent bonds in a polymer
of L monomers that contains L− 1 bonds.

∆Sf/KBT has a maximum near σ = 2.5 (correspond-
ing also to the maximum of ζ), a smaller value of σ than
for the maximum of Ψ , and ∆S/KBT , and the local max-
imum of 〈L〉.

Various system sizes have been used in simulations to
check the effect of the finite size of the simulation box.
There is a very slight increase of 〈L〉 with the box size
at high σ. Although the lattice is known to increases the
chain orientation, the present work shows that the order-
ing disappears at very high σ. Hence, the lattice nature
and finite size effects play against the present results, so
that we can be confident to their reliability.

Conclusion

As for geometrical constraints like the presence of walls [7]
or obstacles [28], the stiffness decreases the mean contour
length.

The increase in stiffness causes a local ordering, but the
decrease in the chain contour length leads to an isotropic
system of stiff short rods so that the ordering in the system
goes through a maximum as a function of the chain stiff-
ness. This ordering of the rod-like polydisperse system and
the appearance of an isotropic phase of rod should lead to
interesting corresponding rheological behaviours [29]. The
chain length distribution adapts itself near the maximum
of ordering in the bulk increasing the configurational en-
tropy.
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